If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+3y=279
We move all terms to the left:
y^2+3y-(279)=0
a = 1; b = 3; c = -279;
Δ = b2-4ac
Δ = 32-4·1·(-279)
Δ = 1125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1125}=\sqrt{225*5}=\sqrt{225}*\sqrt{5}=15\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-15\sqrt{5}}{2*1}=\frac{-3-15\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+15\sqrt{5}}{2*1}=\frac{-3+15\sqrt{5}}{2} $
| 19x+37=-58 | | 4q-1=-9 | | 4(t-8)=-15 | | 2.8a+19.8=-1.2(-4.8a+2) | | -40=5x+35 | | 9(5x-3)=63 | | 28=7x-21 | | (3x+7)(2)=7x+6 | | 1.6(1+1.5a)=17.84-3.2a | | 3x/8+4=0.2x+5 | | 13=12x-11 | | {v=8}-5=2 | | 3x^2-6x+10=5 | | 1.386363636=2^x | | 5y-17=3y+2y-3 | | 12-8(5n-12)=-12n-12(2n-10) | | (v=8)-5=2 | | t−3(4−t)=−24 | | 5x-1/8=3/4 | | 14x+6-10x+30=46 | | 2/3y+6=2/3y-6 | | -3(1+2b)=-(3+4b) | | 4(n+3)=2(n+1) | | 3m−m+3=9 | | 9(1-2+v)-3(v+5)=-5-v-1-10v | | 62=6+7a | | 18c-8c=-10 | | 3x-6=2(-x+7) | | 0.50(5-2x)=-x+1 | | 8z+6*3=10 | | 4c=c+15 | | 2b+2(b-10)=80 |